The mathematics of microstructure and the design of new materials.

نویسندگان

  • K Bhattacharya
  • G Friesecke
  • R D James
چکیده

The ‘‘pathological’’ energy function E(u) 5 u2 for u Þ 0, E(0) 5 1, has no minimizer. As u decreases to 0, the energy also decreases, but there is no way to achieve the value 0. Although examples like this might seem to be unimaginably far from scientific thought, they are at the heart of a new approach (1) to understand the complex microstructure and macroscopic response of materials that undergo phase transformations. The free energy of such materials typically has no minimizer, and the observed microstructures (complex, fine-scale patterns of domains of different atomic lattice structure as shown below in a micrograph of CuAlNi by C. Chu and R.D.J.; Fig. 1) have their origin in the material’s ultimately futile attempt to find the minimum energy state (2). The lack of a ground state prohibits prediction of the macroscopic response from microscopic data via the standard procedure: determine the free energy, find the minimizing state, and evaluate its macroscopic properties. Emerging mathematical methods, linked to profound work in the 1940s by L. C. Young and recently surveyed in (3), nevertheless deliver well defined macroscopic quantities, obtained via averaging over all lowenergy states. One area where predictions obtained in this new way have played a role is the recent synthetization of a new magnetostrictive material (4, 5) whose magnetostrictive strain is 50 times larger than that of giant magnetostrictive materials (formerly those with the largest strain). Energy Functions and Energy Wells. The materials on which the new coarse-graining methods have been brought to bear are alloys exhibiting a martensitic transformation. In this transformation, below a critical temperature, the unit cell of the crystal undergoes a bifurcation into different, lower symmetry unit cells. (Not just thousands of alloys but also ceramics and proteins undergo this transformation.) The relevant microscopic parameters (transition temperature, symmetry changes, and lattice parameters) can be regarded as known from atomic measurements and can be subsumed into a cell energy function F(F, u) depending on temperature and on the 3 3 3 matrix F 5 (e1, e2, e3) of lattice vectors of the cell. A macroscopic sample can be described by a continuous vector field y(x) indicating the position of the lattice site formerly at x (martensitic transformations are coherent, i.e., the atomic bonds stay intact). The complicated cooperative effects between the cells, which result in structures like the one shown above, can be explained via minimization of the total free energy (1)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of chemical composition variations on microstructure and mechanical properties of nanostructured, low temperature bainitic steels

Bainitic transformation at low transformation temperatures leads to a microstructure involving fine plates of bainitic ferrite and thin films of retained austenite. This microstructure has shown ultimate tensile strength of about 2.2 GPa, noticeable uniform elongation in the range of 5 to 30%, hardness values of about 600 to 670 HV and impact toughness in the range of 30 to 40 MPa m1/2. With ca...

متن کامل

Study on the Effect of Laser Welding Parameters on the Microstructure and Mechanical Properties of Ultrafine Grained 304L Stainless Steel

In the present study, an ultrafine grained (UFG) 304L stainless steel with the average grain size of 300 nm was produced by a combination of cold rolling and annealing. Weldability of the UFG sample was studied by Nd: YAG laser welding under different welding conditions. Taguchi experimental design was used to optimize the effect of frequency, welding time, laser current and laser pulse duratio...

متن کامل

A new approach to microstructure optimization of solid oxide fuel cell electrodes

Designing optimal microstructures for solid oxide fuel cell (SOFC) electrodes is complicated due to the multitude of electro-chemo-physical phenomena taking place simultaneously that directly affect working conditions of a SOFC electrode and its performance. In this study, a new design paradigm is presented to obtain a balance between electrochemical sites in the form of triple phase boundary (...

متن کامل

A Comparison of the Microstructure of self compacting concretes containing nano and microsilica

Abstract Self compacting concrete (SCC) is a new construction material in the world. The aim of this research is to construct self compacting concrete with high compressive strength using combination of nano silica and micro silica. For this purpose, nano silica, micro silica, Portland cement type 2, superplasticizer (SP), and gravel and sand have been used. Three different groups of samples wi...

متن کامل

Fabrication and Characteristics of 8YSZ/Ni functionally Graded Materials by Applying Spark Plasma Sintering Procedure (RESEARCH NOTE)

Functionally graded materials (FGM) in the form of layered structure consisting of yttria stabilized zirconia (8 mol% Y2O3) and nickel were fabricated by spark plasma sintering procedure. The relative density, linear shrinkage and Vickers hardness of each layer of graded materials were measured. The microstructure and the composition of these components were studied. The results obtained show t...

متن کامل

Study on the Microstructure of Hot Deformed Cu-28Zn Prealloyed Powder Compacts

The role of microstructure on hot deformation behavior of sintered Cu-28Zn prealloyed powder compacts was investigated by a series of isothermal hot compression tests in the temperature range of 550- 850°C at strain rates of 0.001, 0.01, 0.1 and 0.5 s-1, by taking into consideration the Hyperbolic Sine functional behavior to analyze the deformation behavior of the alloy. The results indicate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 15  شماره 

صفحات  -

تاریخ انتشار 1999